Magnetic microbubble-mediated ultrasound-MRI registration based on robust optical flow model

نویسندگان

  • Mo Hou
  • Chunxiao Chen
  • Dalin Tang
  • Shouhua Luo
  • Fang Yang
  • Ning Gu
چکیده

BACKGROUND As a dual-modality contrast agent, magnetic microbubbles (MMBs) can not only improve contrast of ultrasound (US) image, but can also serve as a contrast agent of magnetic resonance image (MRI). With the help of MMBs, a new registration method between US image and MRI is presented. METHODS In this method, MMBs were used in both ultrasound and magnetic resonance imaging process to enhance the most important information of interest. In order to reduce the influence of the speckle noise to registration, semi-automatic segmentations of US image and MRI were carried out by using active contour model. After that, a robust optical flow model between US image segmentation (floating image) and MRI segmentation (reference image) was built, and the vector flow field was estimated by using the Coarse-to-fine Gaussian pyramid and graduated non-convexity (GNC) schemes. RESULTS Qualitative and quantitative analyses of multiple group comparison experiments showed that registration results using all methods tested in this paper without MMBs were unsatisfactory. On the contrary, the proposed method combined with MMBs led to the best registration results. CONCLUSION The proposed algorithm combined with MMBs contends with larger deformation and performs well not only for local deformation but also for global deformation. The comparison experiments also demonstrated that ultrasound-MRI registration using the above-mentioned method might be a promising method for obtaining more accurate image information.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global Registration of Ultrasound to MRI Using the LC2 Metric for Enabling Neurosurgical Guidance

Automatic and robust registration of pre-operative magnetic resonance imaging (MRI) and intra-operative ultrasound (US) is essential to neurosurgery. We reformulate and extend an approach which uses a Linear Correlation of Linear Combination (LC2)-based similarity metric, yielding a novel algorithm which allows for fully automatic US-MRI registration in the matter of seconds. It is invariant wi...

متن کامل

Combining DCE-MRI and microbubble ultrasound to evaluate response to Sunitinib in patients with renal cell carcinoma

INTRODUCTION: As more anti-angiogenic drugs are developed, assessment of patient response during therapy is becoming crucial. DCE-MRI has been proposed as a way of detecting changes in the vasculature. For example, the Tofts model (1) provides the volume transfer constant, Ktrans, which describes permeability and flow, and ve, the extravascular, extracellular volume fraction. It has been shown ...

متن کامل

Modeling and investigating the effect of ultrasound waves pressure on the microbubble oscillation dynamics in microvessels containing an incompressible fluid (Research Article)

Understanding the dynamics of microbubble oscillation in an elastic microvessel is important for the safe and effective applications of ultrasound contrast agents in imaging and therapy. Numerical simulations based on 2D finite element model are performed to investigate the effect of acoustic parameters such as pressure and frequency on the dynamic interaction of the fluid-blood-vessel system. ...

متن کامل

Permeability dependence study of the focused ultrasound-induced blood-brain barrier opening at distinct pressures and microbubble diameters using DCE-MRI.

Blood-brain barrier opening using focused ultrasound and microbubbles has been experimentally established as a noninvasive and localized brain drug delivery technique. In this study, the permeability of the opening is assessed in the murine hippocampus after the application of focused ultrasound at three different acoustic pressures and microbubble sizes. Using dynamic contrast-enhanced MRI, th...

متن کامل

Enhancement of gas-filled microbubble R2* by iron oxide nanoparticles for MRI.

Gas-filled microbubbles have the potential to become a unique intravascular MR contrast agent due to their magnetic susceptibility effect, biocompatibility, and localized manipulation via ultrasound cavitation. However, microbubble susceptibility effect is relatively weak when compared with other intravascular MR susceptibility contrast agents. In this study, enhancement of microbubble suscepti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2015